David King <amigadave@amigadave.com>

21st April 2016 / GNOME.Asia / workshop
Licensed under CC0-1.0
http://amigadave.fedorapeople.org/gnome_asia_training_2016.pdf

Blowou
K GNOME 5

mailto:amigadave@amigadave.com
http://creativecommons.org/publicdomain/zero/1.0/
http://amigadave.fedorapeople.org/gnome_asia_training_2016.pdf

Summary

@ GNOME as a platform for
application development

@ 6-month development
cycle

@ write applications in
Python, JavaScript, Vala or
C (or others)

Blowou
K GNOME 5

GNOME application development
(o] le}

@ GLib (including GObject
and GIO)
o GTK+

@ many others (see the
application development
overview on
developer.gnome.org)

&)

K GNOME asna,

https://wiki.gnome.org/Projects/GLib
https://wiki.gnome.org/Projects/GLib
http://www.gtk.org/
https://developer.gnome.org/platform-overview/stable/tech.html
https://developer.gnome.org/platform-overview/stable/tech.html
https://developer.gnome.org/platform-overview/stable/tech.html

GNOME application development
ooe

@ Glade, for designing GUIs

@ Devhelp, for browsing API reference
documentation

o Builder, a future GNOME IDE

@ Inspector, a GTK+ tool for debugging
Uls

Blowou
K GNOME 5

https://wiki.gnome.org/Apps/Glade
https://wiki.gnome.org/Apps/Devhelp
https://wiki.gnome.org/Apps/Devhelp
https://wiki.gnome.org/Apps/Builder
https://wiki.gnome.org/Projects/GTK+/Inspector
https://wiki.gnome.org/Projects/GTK+/Inspector

GNOME application development
0000000000000 0000000000

@ Clone the git repository: git clone
git://fedorapeople.org/home/fedora/amigadave/
public_git/c-gnome-app.git

@ Browse through the git commits:
http://fedorapeople.org/cgit/amigadave/
public_git/c—-gnome-app.git/

@ Open your favourite text editor or IDE

@ Build: autoreconf -f -i; ./configure; make

@ Try running the application: . /c-gnome-app

Blowou
K GNOME 5

http://fedorapeople.org/cgit/amigadave/public_git/c-gnome-app.git/
http://fedorapeople.org/cgit/amigadave/public_git/c-gnome-app.git/

GNOME application development
0000000000000 0000000000

@ Include gtk/gtk.h

o Initialize GTK+

@ Show a window

@ Run the GTK+ main loop

@ The application must be killed externally!

Blowou
K GNOME 5

GNOME application development

0O0@00000000000000O000000

#include <gtk/gtk.h>

int main (int argc, char xargv[])

{
GtkWidget +window;
gtk_init (&argc, &argv);
window = gtk_window_new (GTK WINDOW_TOPLEVEL);
gtk_widget_show_all (window);
gtk_main ();
return O;
}

@ .
LJ GNOME.A;&&S

simmit

GNOME application development

O00@0000000000000O000000

@ Connect the activate signal of the application to a
handler

@ Create or show the window in the handler

o GTK+ widgets (and other Gob jects) have signals, which
are documented in the API references

@ The application terminates when the window is closed

@ See https://wiki.gnome.org/HowDol/GtkApplication for
more details on GtkApplication

Blowou
K GNOME 5

https://wiki.gnome.org/HowDoI/GtkApplication
https://wiki.gnome.org/HowDoI/GtkApplication

#include <gtk/gtk.h>

static void

on_activate (GApplication xapp,
gpointer user_data)

{

GtkWidget +window;

window = gtk_application_window_new (
GTK_APPLICATION (app));
gtk_widget_show_all (window);

}

/+ Continued on next slide. x/

GNOME application development
00000e00000000000000000

/x Continued from previous slide. */

int main (int argc, char xargv[])
{
GtkApplication xapp;
gint status;
app = gtk_application_new ("org.example.CGnome",
G_APPLICATION_FLAGS_NONE) ;
g_signal_connect (app, "activate",
G_CALLBACK (on_activate), NULL);
status = g_application_run (G_APPLICATION (app),
argc, argv);
g_object_unref (app);
return status;

Blowou
K GNOME 5

GNOME application development
000000 @0000000000000000

@ Add an action for quitting the application, and another for
printing hello world

@ Connect the activate signal of the actions to handlers
@ Associate an accelerator with each action

@ See https://wiki.gnome.org/HowDol/GAction for more
details

Blowou
K GNOME 5

https://wiki.gnome.org/HowDoI/GAction
https://wiki.gnome.org/HowDoI/GAction

#include <gtk/gtk.h>
static GtkWidget xwindow;

static void

on_hello_world (GSimpleAction =xaction,
GVariant xparameter,
gpointer user_data)

{
}

static void

on_quit (GSimpleAction =xaction,
GVariant xparameter,
gpointer user_data)

g_print ("%s\n", "Hello_world!");

{
}

g_application_quit (G_APPLICATION (user_data));

/+ Continued on next slide. x/

/x Continued from previous slide. */
static const GActionEntry actions|[] =
{
{ "hello—world", on_hello_world },
{ "quit", on_quit }
b

static void

on_activate (GApplication xapp,
gpointer user_data)

{

}

/+ Continued on next slide. x/

gtk_widget_show_all (window);

/x Continued from previous slide. x/
static void on_startup (GApplication =*app,

gpointer user_data)
{

const gchar x const hello_world_accel[] = { "<Primary>h",
NULL };
const gchar x const quit_accel[] = { "<Primary>q", NULL };
g_action_map_add_action_entries (G_ACTION_MAP (app),
actions,
G_N_ELEMENTS (actions),
app);
window = gtk_application_window_new (GTK_APPLICATION (app));
gtk_application_set_accels_for_action (GTK_APPLICATION (app),
"app. hello—world",
hello_world_accel);
gtk_application_set_accels_for_action (GTK_APPLICATION (app),
"app.quit",
quit_accel);
}

/+ Continued on next slide. x/

/x Continued from previous slide. x/
int main (int argc, char xargv[])
{
GtkApplication =app;
gint status;
app = gtk_application_new ("org.example.CGnome" ,
G_APPLICATION_FLAGS_NONE) ;
g_signal_connect (app, "activate",
G_CALLBACK (on_activate), NULL);
g_signal_connect (app, "startup",
G_CALLBACK (on_startup), NULL);
status = g_application_run (G_APPLICATION (app),
argc, argv);
g_object_unref (app);
return status;

GNOME application development
0000000000080 0000000000

@ Create a menu model
o Link the menu items to actions, in the correct group
@ Set the application menu on the application

@ See https://wiki.gnome.org/HowDol/ApplicationMenu for
more details

Blowou
K GNOME 5

https://wiki.gnome.org/HowDoI/ApplicationMenu
https://wiki.gnome.org/HowDoI/ApplicationMenu

/x Incomplete snippet. =/
GMenu xappmenu;;
GMenu x«section;
GMenultem xitem ;
appmenu = g_menu_new ();
section = g_menu_new ();
item = g_menu_item_new ("Hello_world!", "app.hello—world");
g_menu_append_section (appmenu, NULL, G MENU MODEL (section));
g_menu_append_item (section, item);
g_object_unref (item);
item = g_menu_item_new ("Quit", "app.quit");
g_menu_append_item (section, item);
g_object_unref (item);
gtk_application_set_app_menu (gtk_app,
G_MENU _MODEL (appmenu));
g_object_unref (appmenu);

GNOME application development
0000000000000 e000000000

@ As buttons implement the GtkActionable interface, they
can also be linked to actions

@ Set the action name on the GtkActionable with the
action-name property

o As GtkWindow is a GtkContainer, use the add ()
method to put the button in the window

@ See the GtkActionable API reference for more details

Blowou
K GNOME 5

https://developer.gnome.org/gtk3/stable/GtkActionable.html

/% Put these code lines in the right place. x/

button = gtk_button_new_with_label ("Hello_world!");

gtk_actionable_set_action_name (GTK_ACTIONABLE (button),
"app.hello—world");

gtk_container_add (GTK_CONTAINER (window), button);

GNOME application development
0000000000000 00e0000000

@ Add a GtkEntry (or a GtkTreeView if you are feeling
confident)

@ Save the contents of the text entry when quitting, load
them on startup

@ No hints this time, you have to do it yourself!

@ You will find the GtkEntry API reference helpful. Use
GLib or stdio functions to load and save the text file

Blowou
K GNOME 5

https://developer.gnome.org/gtk3/stable/GtkEntry.html

GNOME application development
0000000000000 000e000000

@ Install a desktop file and icon to show your application
alongside others

@ Use a standard build system to make your application a
releasable unit

@ Make regular releases, so that your application can be
easily consumed

@ Package your application for distributions

@ Look forward to a future of application sandboxing (see my
xdg-app talk during the conference)

Blowou
K GNOME 5

https://developer.gnome.org/platform-overview/stable/dev-launching.html
https://developer.gnome.org/platform-overview/stable/dev-launching.html

[Desktop]

Name=My C App

Comment=Short description of this application
Keywords=c; editor ;

Type=Application

Exec=c—gnome—app

Icon=c—gnome—app

Categories=Gtk ;GNOVE; Utility ;

AC_INIT ([C GNOME App],
[0.1],
[amigadave@amigadave .com],
[c—gnome—app],
[hitp://fedorapeople.org/cgit/amigadave/public_git/

c—gnome—app. git/])

AM_INIT_ AUTOMAKE ([1.11 foreign])
PKG_CHECK MODULES([APP], [gtk+-3.0 >= 3.12])
AC_PROG_CC

AC_CONFIG_FILES ([Makefile])

AC_OUTPUT

bin PROGRAMS = c—gnome—app

¢_gnome_app_CFLAGS = $(APP_CFLAGS)
c_gnome_app_LDFLAGS = $(APP_LIBS)
c_gnome_app_SOURCES = c—gnome—app.c

desktopdir = $(datadir)/applications
dist_desktop_DATA = c—gnome—app .desktop

GNOME application development
0000000000000 0000000e00

@ Run autoreconf --force --install to generate the
build files

@ Run . /configure to configure the project and check for
required dependencies

@ Run make to build the project, and make install to
install it into the default prefix

@ Runmake distcheck to create a tarball and perform a
build and install check

Blowou
K GNOME 5

GNOME application development
0000000000000 00000000e0

o GNOME applications use GNU gettext for marking,
extracting and retrieving translatable strings

@ intltool is currently used for translating desktop files and
GSettings schemas, but the latest version of gettext can do
this too

@ See the translation guide in the application development
overview

Blowou
K GNOME 5

https://developer.gnome.org/platform-overview/stable/dev-translate.html
https://developer.gnome.org/platform-overview/stable/dev-translate.html

GNOME application development
0000000000000 000000000e

@ GNOME application documentation is written in the
Mallard format

@ Designed to be concise and task-based

o Attend the “GNOME Documentation” talks for more
information

@ See the user help section of the application development
overview

Blowou
K GNOME 5

https://developer.gnome.org/platform-overview/stable/dev-help.html
https://developer.gnome.org/platform-overview/stable/dev-help.html

Summary

@ Mailing lists, https://mail.gnome.org/
@ Wiki, https://wiki.gnome.org/

o IRC,
https://wiki.gnome.org/Community/GettinginTouch/IRC

@ https://developer.gnome.org/

Blowou
K GNOME 5

https://mail.gnome.org/
https://wiki.gnome.org/
https://wiki.gnome.org/Community/GettingInTouch/IRC
https://developer.gnome.org/

@ GSettings is the APl in GIO used for storing user
preferences

@ Settings are stored in dconf on Unix, the registry on
Windows

@ GAction can be backed by a setting

Blowou
K GNOME 5

@ popovers, header bars, and lots more!
o DBusActivatable applications
@ widget templates

@ GResource (application resources and data built into a
single binary)

@ xdg-app bundle

Blowou
K GNOME 5

	GNOME application development
	Introduction
	Worked examples

	Summary
	Appendix

